## Path Integrals in Physics: Volume I & II (2 volume set)

Format: Hardcover
Language: English
Format: PDF / Kindle / ePub
Size: 5.55 MB
Downloadable formats: PDF
From either astronaut’s perspective, the other is the one spinning. The equations are \[ \begin{aligned}\frac{d Q_k}{dt} & = \frac{\hbar}{m_k} \mathrm{Im} \frac{\nabla \psi}{\psi} (Q, t) \\i \hbar \frac{ \partial \psi}{\partial t} & = -\sum_{j=1}^{N} \frac{\hbar^2}{2m_j} \Delta \psi(q, t) + V(q) \psi(q,t) \\ \end{aligned} \] where $m_k$ represents the mass of the $k$th particle, $Q_k$ represents the actual position of the $k$th particle, $q$ is a generic configuration point in $\R^{3N}$, and $\mathrm{Im}$ represents taking the imaginary part of the given expression.
(more…)...